Absolute Risk: Clinical Applications and Controversies

Biopharmaceutical Applied Statistics Symposium, XIV November 5, 2007

Mitchell Gail

Biostatistics Branch Division of Cancer Epidemiology and Genetics

Overview

- Definition and example of absolute risk model
- Applications
- General criteria for assessing risk models
- Loss function approach tailored for specific problems
- Conclusions

Relative Risk for Breast Cancer

 age 40Menarche age 14
Nulliparous
No biopsies
Mother had breast cancer
baseline risk
increased risk
baseline risk
increased risk

Relative risk $=2.76$ compared to a 40 year old woman with all risk factors at baseline.

Absolute Risk for Breast Cancer Computed from Gail et al., JNCI, 1989

age 40
Menarche age 14
Nulliparous
baseline risk

No biopsies increased risk baseline risk Mother had breast cancer increased risk

What is the chance that this woman will be diagnosed with breast cancer in the next 30 years? 0.116 (11.6\%)

Absolute ("Crude") and "Pure" Risk in 1000 60-Year Old Women

Age at Start of Interval	\# At Risk	\# Incident Breast Cancer	\# Deaths from Other Causes
60	1000	17	44
65	939	20	63
70	856	22	89
75	745	$\ldots .$.	\ldots.

Absolute risk of breast cancer to age $75=$ $(17+20+22) / 1000=5.9 \%$
"Pure" risk = 1-(1-17/1000)(1-20/939)(1-22/856)
$=6.3 \%$

Absolute Risk Calculation for Woman with Risk Factors X

$$
\int_{a}^{a+\tau} h_{1}(t) r r(t ; x) \exp \left[-\int_{a}^{t}\left\{h_{1}(u) r r(u ; x)+h_{2}(u)\right\} d u\right] d t
$$

$\mathrm{h}_{1}(\mathrm{t})$ is baseline hazard of breast cancer incidence
$h_{2}(t)$ is mortality hazard from competing risks
$r r(t ; x)=\exp \left\{\sigma^{T} x(t)\right\}$ is relative risk of breast cancer for covariates $x(t)$

Absolute Risk Depends on

- Age
- Age Interval at Risk
- Risk Factors
- Competing Risks

Advantages of Cause-Specific

Relative Risk Model for Covariates

- Familiar interpretation of cause-specific relative risks
- Standard survival methods for estimation with cohort data
- Possible to use different data sources:
- Relative risks from case-control or case-cohort data
- Baseline hazard $h_{1}(t)$ from SEER data via

$$
h_{1}(t)=h_{1}^{*}(t)\{1-A R(t)\},
$$

where $h^{*}{ }_{1}(t)$ is the incidence rate in SEER

- For alternative modeling, see Fine and Gray (JASA, 1999)

Uses of Absolute Risk

- Counseling patients
- Comparing risks and benefits of interventions such as tamoxifen
- Designing clinical trials
- Assessing the burden of disease in populations

Example of Use of Risk Model: Weighing the Risks and Benefits of Tamoxifen

Gail, Costantino, Bryant, Croyle, Freedman, Helzlsouer, Vogel, JNCI 1999; 91:1829-46.

TAMOXIFEN EFFECTS ON LIFE-THREATENING EVENTS

RR (95\% CI)
INVASIVE BREAST CANCER 0.51 (0.39-.66) HIP FRACTURE
ENDOMETRIAL CANCER

$$
\begin{aligned}
& <50 \\
& 50+
\end{aligned}
$$

STROKE
PULMONARY EMBOLUS
$2.5(1.4-5.0)$
4.0 (1.7-11)
1.6 (0.9-2.8)
3.0 (1.2-9.3)

Fisher et al, JNCI, 1998

TAMOXIFEN EFFECTS ON SEVERE AND OTHER EVENTS

RR (95\% CI)

SEVERE EVENTS
In Situ BREAST CA
DEEP VEIN THROMB.
1.60 (0.91-2.86)

OTHER EVENTS
COLLES' FRACTURE SPINE FRACTURE CATARACTS
0.61 (0.29-1.23)
0.74 (0.41-1.32)
1.14 (1.01-1.29)

10,000 40-YEAR- OLD WHITE WOMEN WITH UTERI. 5-YEAR RISK OF INVASIVE BREAST CANCER 2\%.

LIFE-THREATENING INVASIVE BREAST CA HIP FRACTURE ENDOMETRIAL CA STROKE PUL. EMBOLUS

BASELINE 200

2
10
22
7

PREVENTED BY
TAMOXIFEN 97
1
-16

- 13
-15
net prevented 54
SEVERE EVENTS
IN SITU BREAST CA
DEEP VEIN THROMBOSIS

106
24

53
-15
net prevented 38

NET BENEFIT INDEX* FOR 10,000 WOMEN WITH UTERI OVER 5 YEARS

INVASIVE BREAST CA RISK (5 YEARS)
2%
4%
6%

WHITE
40-49 50-59
$\begin{array}{rc}73 & -75 \\ 196 & 38 \\ 318 & 149\end{array}$

14	-187
137	-74
259	37

*Net number of life-threatening events prevented plus half the net number of severe events prevented

Model Assessment Based on Population of N Subjects

- $\mathbf{Y}_{\mathrm{i}}=1$ if cancer develops in time specified interval, 0 otherwise, $\mathrm{i}=1,2, \ldots . \mathrm{N}$
- X_{i} are covariates for subject i
- $r\left(X_{i}\right)$ is previously developed absolute risk model designed to estimate $P\left(Y_{i}=1\right)$
- π_{i} is the true $P\left(Y_{i}=1\right)$

Gail and Pfeiffer, Biostatistics, 2005

Some standard criteria for

 evaluating the performance of risk models- Calibration: Are estimates $r(x)$ of π unbiased?
- Discrimination: How different are the distributions of risk among individuals who do and do not develop the disease (concordance or AUC)?
- Accuracy: How well does model categorize individuals (PPV, NPV, Proportion Correctly Classified)?

Assessing Model Calibration

Goodness-of-fit criteria based on comparing observed (O) with expected (E) number of events overall and in subgroups $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots$ of the population

$$
\begin{aligned}
O_{k} & =\sum_{i=1}^{N} Y_{i} I\left(X_{i} \in A_{k}\right) \\
E_{k} & =\sum_{i=1}^{N} r\left(X_{i}\right) I\left(X_{i} \in A_{k}\right)
\end{aligned}
$$

If r is well calibrated, \mathbf{O}_{k} has mean E_{k}

Calibration of the Gail Model in the Breast Cancer Prevention Trial (Costantino et al, 1999)

Age Group	$\#$ women	O	E	E / O
$<=49$	2332	60	55.9	0.9
$50-59$	1807	43	48.4	1.1
$>=60$	1830	52	54.7	1.1
All ages	5969	155	159.0	1.0

Modest Discriminatory Power

Rockhill et al., JNCI 2000

Distribution of breast cancer risk among cases and controls derived from National Health Interview Survey Data

Estimoted Probobility Density Function

Distribution of $r(X)$ in the Population

Let the set of risk factors X have distribution $\mathrm{G}_{\mathrm{x}}(x)$. The induced distribution of $\mathrm{r}(\mathrm{X})$ is:

$$
F(r)=\int_{\{x: r(x) \leq r\}} d G_{x}(x)
$$

Distributions of Risk, r, in Random Samples of Cases and Controls

$$
\begin{aligned}
\mathrm{F}_{\text {case }}\left(\mathrm{r}^{*}\right) & =P\left(r \leq \mathrm{r}^{*} \mid Y=1\right) \\
& =\frac{1}{\mu} \int_{0}^{r *} r d F(r)
\end{aligned}
$$

$\mathrm{F}_{\text {control }}\left(\mathrm{r}^{*}\right)=P\left(r \leq \mathrm{r}^{*} \mid Y=0\right)=\frac{1}{1-\mu} \int_{0}^{r^{*}}(1-r) d F(r)$
with $\mu=\int_{0}^{1} r d F(r)$

Sensitivity and specificity of decision rule $\delta=1$ if $r \geq r^{*}$ and $\delta=0$ otherwise

$\operatorname{sens}\left(\mathrm{r}^{*}\right)=P(\delta=1 \mid Y=1)=P\left(r \geq \mathrm{r}^{*} \mid Y=1\right)$

$$
=1-\mathrm{F}_{\text {case }}\left(\mathrm{r}^{*}-\right)
$$

$\operatorname{spec}\left(\mathrm{r}^{*}\right)=P(\delta=0 \mid Y=0)=P\left(r<\mathrm{r}^{*} \mid Y=0\right)$

$$
=\mathrm{F}_{\text {control }}\left(\mathrm{r}^{*}-\right)
$$

Comments on Area Under ROC (AUC)

- Can be estimated from case-control data
- Hard to increase
- Incorporation of mammographic density, a strong risk factor, only increases from e.g. 0.60 to 0.66 for 60-64 yrs women (Chen, . . . Gail, JASA, in press)
- Comparable to AUC for age-specific AUC for cardiovascular risk models

Can a model with modest discriminatory value be useful for screening? For deciding whether or not to intervene?

Specific Loss Function-Based

Approach to Model Assessment

Two applications:
-Screening
-Weighing risks and benefits of an intervention

Gail and Pfeiffer, Biostatistics 2005

Screening Context

- Screening (no effect on outcomes)
- Questionnaire given
- Risk r estimated from questionnaire data
- Recommend colonoscopy ($\delta=1$) if $r \geq r^{*}, a$ threshold

Losses from Using a Risk Model to

 Decide Whether to RecommendColonoscopy

Outcome over next 5 Years	No Colonoscopy	Colonoscopy
$\mathrm{Y}=0$ (no cancer)	$0=\mathrm{C}_{00}$	$1=\mathrm{C}_{10}$
$\mathrm{Y}=1$ (cancer)	$100=\mathrm{C}_{01}$	$11=\mathrm{C}_{11}$

Expected Loss

$$
\begin{aligned}
& E L=C_{11} P(Y=1, \delta=1)+C_{01} P(Y=1, \delta=0) \\
& +C_{10} P(Y=0, \delta=1)+C_{00} P(Y=0, \delta=0) \\
& =C_{11} \int_{r^{*}}^{1} r d F(r)+C_{01} \int_{0}^{r^{*}} r d F(r)+C_{10} \int_{r^{*}}^{1}(1-r) d F(r) \\
& \quad+C_{00} \int_{0}^{r^{*}}(1-r) d F(r) \\
& E^{\text {Min }} \text { for r } r^{*}=\frac{C_{10}-C_{00}}{C_{10}+C_{01}-C_{00}-C_{11}}
\end{aligned}
$$

$\mathrm{EL}_{\text {Min }}=C_{11} \mu \operatorname{sens}\left(\mathrm{r}^{*}\right)+C_{01} \mu\left(1-\operatorname{sens}\left(\mathrm{r}^{*}\right)\right)+$

$$
C_{10}(1-\mu)\left(1-\operatorname{spec}\left(r^{*}\right)\right)+C_{o 0}(1-\mu) \operatorname{spec}\left(r^{*}\right)
$$

A perfect model with sens $\left(r^{*}\right)=1$ and $\operatorname{spec}\left(r^{*}\right)=1$ attains expected loss:

$$
E L_{\text {perfect }}=C_{11} \mu+C_{00}(1-\mu)
$$

Loss Ratio $=\mathrm{EL}_{\operatorname{Min}} / \mathrm{EL}_{\text {perfect }}$

Loss Ratio vs Sensitivity for Various Specificities

Conclusion for Screening Application

- Losses are large, compared to model with perfect sensitivity and specificity.
- A risk model with sensitivity and specificity of Gail model has loss ratio 6.6 for screening

Decision to Intervene

$\delta=1$ if decide to intervene, $\bar{\delta}=0$ otherwise.
"Intervention" changes distribution of health outcomes.

Consider two outcomes for tamoxifen intervention:
$\mathrm{Y}_{1}=$ breast cancer
$Y_{2}=$ stroke

$$
P\left(Y_{1}=i, Y_{2}=j \mid \delta=0\right) \neq P\left(Y_{1}=i, Y_{2}=j \mid \delta=1\right)
$$

Loss function for clinical decision: should woman take Tamoxifen for breast cancer prevention?

	No BC	BC	No Stroke	Stroke
No Tamoxifen	0	1	0	1
Tamoxifen	0	1	0	1

Example: Breast Cancer, Stroke and Intervention by Tamoxifen

STROKE: No covariate model for stroke risk; use average age-specific risk s

$$
r_{001}(x)=s, r_{101}(x)=1.6 s
$$

BREAST CANCER:
$r_{010}(x)=$ Gail model estimate for breast cancer

$$
r_{110}(x)=0.5 r_{010}(x)
$$

$$
r_{011}(x)=r_{111}(x)=0
$$

Loss Ratio vs Sensitivity for Various Specificities

Conclusions for Intervention Setting

- For decision regarding intervention with beneficial and adverse effects, very high discriminatory power not needed
- In tamoxifen/breast cancer/stroke example Gail model has a loss ratio of 1.25 , compared to breast cancer model with perfect sensitivity and specificity

Summary - Assessment Procedures

- Good calibration of absolute risk models essential
- High discriminatory power needed for screening, but not as important for other decisions
- Loss-function approach for a specific application can be more revealing than general assessment criteria

Summary - Applications

- Well calibrated absolute risk models useful for:
- counseling
- weighing risks and benefits of preventive interventions
- designing prevention trials
- assessing disease burden in a population
- Applications in newly diagnosed patients
- .e.g. What is the chance that a 65 year old male just diagnosed with prostate cancer will die of that disease?

References

Gail model
 Gail et al. JNCI, 1989
 http://www.cancer.gov/bcrisktool/

Validation studies
Costantino et al. JNCI, 1999
Rockhill et al, JNCI, 2001
Gail and Pfeiffer, Biostatistics, 2005

Measuring risk versus benefit
Gail et al, 1999, JNCI, 91: 1829-1846

Acknowledgements

Jacques Benichou

 Jinbo ChenAndrew Freedman Barry Graubard John Mulvihill David Pee Ruth Pfeiffer Catherine Schairer

